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Abstract. A new real-space renormalisation group method is developed to treat systems 
with directionally dependent critical behaviour. Here two effective lengths SI,( b )  and S , ( b )  
are defined for a given cell of linear size b. The renormalised lattice is constructed from 
these effective lengths and is deformed from the original lattice. It is the anisotropic 
rescaling of these effective lengths which give the anisotropic exponents vII and vI. This 
method gives the exact result for the case of fully directed SAWS on a square lattice in the 
b -P 00 limit. For directed bond and directed site lattice animals, the results obtained here 
are also in good agreement with the other known values. 

1. Introduction 

The systems with directionally dependent critical phenomena have been the focus of 
much study in the past few years. These systems are directed percolation (see e.g. 
Kinzel 1983), directed lattice animals (see e.g. Nadal et a1 1983) and directed self- 
avoiding walks (SAWS) (Redner and Majid 1983). It is well known that the introduction 
of preferred direction in such systems gives rise two independent correlation lengths 
tI1 and t,, parallel and perpendicular to the preferred direction respectively. For 
the case of directed SAWS, the corresponding exponents vII and Y, have been obtained 
exactly with the values viI = 1 and v, = f for all dimensions d 2 2 (Redner and Majid 
1983, Cardy 1983). For the other systems vl1 and v, have been calculated by various 
methods: e.g. Monte Carlo, series expansion and phenomenological renormalisation 
( d  = 2 only) etc. 

Attempts have been made to use the usual real-space renormalisation group ( RSRG) 
method for directed systems (Redner and Yang 1982, Redner 1982). However, only 
single U was obtained in these attempts and it was not known how to differentiate vll 
and Y,. Phani and Dhar (1982) have pointed out that an anisotropic scaling with two 
different rescaling factors 41 and b, of the lattice have to be used in RSRG in order to 
obtain two independent vll and vI, with bll and b, related by bll = by with 0 = vi,/ vL. 
Since only certain ratios of bill b, can be realised with reasonable cell sizes, this method 
is not very feasible (Herrmann et a1 1983). To avoid the problem of changing cell 
shapes, Herrmann et a1 (1983) used the trick of patching square cells together to form 
an infinite sequence. They were able to obtain the correct value of yI in the b + CO limit. 

In this paper, we present a new RSRG method for directed systems. Instead of 
choosing an anisotropic cell of linear sizes 41 and bl, we use an isotropic cell of linear 
size b so that the recursion relation can be obtained by conventional methods. To 
introduce an anisotropy, we define two effective lengths SI, and S ,  for both the original 
and renormalised lattices. These effective lengths are taken as the basic units for the 
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measurements of correlation lengths sll and 6,. It is the anisotropic rescaling of SII and 
S, which gives the anisotropic exponents vll and Y,. By doing so, even for small b we 
are able to obtain reasonable values of vll and v,. 

In order to test our method, we first apply it to the simple case of directed SAWS 
on a square lattice where the exact results are known. Then, we use this method for 
the cases of directed bond and directed site lattice animals. 

2. Directed SAWS 

Firstly, for simplicity, we consider the problem of SAWS on a fully directed square 
lattice. To perform RSRG, we choose a cell of linear size b (see figure l ( a )  for b = 3). 
Let K be the fugacity of each directed step in the original lattice. As usual, the 
renormalisated fugacity K '  is defined as the sum of all vertically percolating paths 
which start at the origin and end on the opposite edge of the cell each weighted by 
K",  where n is the number of steps in the path. For the undirected SAWS, one does 
not have to use this corner rule (Redner and Reynolds 1981). But for the directed 
systems our method does require the origin to be fixed on the preferred axis of the 
cell. It is easy to write down the following recursion relation 

(1) K f = K b + ( ; ) K b + l + (  b + l  ) ~ b " +  . . .  +( 2b-2  ) ~ 2 b - 1  , 

b-1 

One can show by induction that the exact critical fugacity K* = $ (Redner and Majid 
1983) is indeed the non-trivial fixed point of ( 1 )  for all b 3 2. In fact, this is the only 
non-trivial fixed point. Now we define the effective lengths Sll and S,.  For the original 
lattice, we decompose a directed one step walk into two components. One parallel 
and the other perpendicular to the preferred direction OY (figure 1). The effective 
lengths Sll(b = 1) and S,(b = 1) are simply the lengths of these two components. If 
the lattice constant of the original lattice is taken to be unity, then Sll( 1) = S,(1) = 1/h. 
In the renormalised lattice, for every percolating path through the cell, we project the 
end point vector OR into two components: one parallel and the other perpendicular 
to the preferred direction (figure l(a)). The effective lengths Sll(b) and S,(b) are 
taken as the lengths of these two components weighted by this configuration and 
averaging over all percolating configurations and finally evaluated at the fixed point 

Figure 1. Directed SAWS. (a )  A cell of 3 X 3 is used for transformation. OY is the 
preferred direction. Lengths SI, and S, are shown. ( b )  OA and OB are the renormalised 
directed steps with fugacity K' .  These form the basic unit of the renormalised lattice. 
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K*. In this simple case, Sll(b) and S, (b )  can be written down immediately with the 
expressions 

b + l  

b - 1  K = K *  

b + l  

+ 1 (:I:) K q }  . 
K = K *  

(3) 

Alternatively, we can also use the second moment average in defining SII and S,.  If 
so, (2) and (3) become 

b + l  

b-1 K =K’ 

b + l  

(4) 

where K’ in (2)-(5) is given by (1).  The reason that the quantities (2)-(5) are evaluated 
at the fixed point K* is because we are interested in the region arbitrarily close to the 
critical point Kc,  and K* will approach K,  as b + CO. From the above definitions, one 
can see that in the critical region, Sll( b)  and S,( 6) are actually the distances made by 
a step of a renormalised directed walk OA relative to the preferred direction of the 
system (figure l (b ) ) .  These renormalised directed steps OA and OB form the basic 
unit of the renormalised lattice. Since the rescaling of SI,( b)  and S,( b)  are nonlinear 
in b(Sil(b) will become linear in the ~ + C O  limit but not for S , ( b ) )  the renormalised 
lattice so a deformed parallelogram lattice is constructed relative to the original lattice 
(figure 2). 

Since the system remains unchanged, except for the change of scales, before and 
after the transformation, we have following relations 

611 ( K 1 / 611 ( K ’ 1 = st, ( b ) / SI1 ( 1 ) and t , (K) / t , (K’)  = SL(b)/SL(l). ( 6 )  

511(K) - (Kc-K)-””  and t , ( K )  - (K,-K)-”l. (7) 

In the critical region, 41(K) and &,(K) behave like 

The correlation length exponents yl and U, can be obtained from ( l ) ,  ( 6 )  and (7) by 
the well known procedure leading to the relations 
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Figure 2. The renormalised lattice (bold lines) is deformed relative to the original lattice. 
The broken curve denotes the range of correlations in the system which remain unchanged 
before and after the transformation. 

and 

where A (b, 1) is the eigenvalue of the recursion relation at the fixed point K*. Similarly, 
one can also perform the cell-to-cell transformation. 

In the usual RSRG for the undirected systems, one always projects the end vector 
of each percolating path onto the vertical (or horizontal) axis. This leads to a constant 
scaling factor b of the usual RSRG. So, our method described here is actually the 
generalisation of the conventional RSRG to the directed systems. 

Now we calculate vli and v, explicitly. From (1) the eigenvalue A (  b, 1) has the 
expression 

b + l  
- b K b - ’ + ( b + l )  (1”> K b + ( b + 2 )  ( ) K b + l +  . . . +(2b-1)  

dK’ 
A(b, 1 ) ~ - -  

dKlK* 

It is easy to see from (2) and (10) that A(b,  1) =J2Sl l (b) .  From (8) we find vlI= 1 for 
all b a 2 .  The agreement with the exact result even for small b is surprising. For 
K* = 4, S,( b )  and A ( b ,  1) of (3) and (10) can be summed up. With some manipulations, 
we find 

1 (26-1)! (i)2b-2 S,( b) =- fi [( b - 1)!12 
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Using ( l l ) ,  (12) and (9) we get v,(2,1) =0.4425, v,(3,1) =0.4436 and cell-to-cell 
result v,( 3,2) = 0.4456. These small cell results are also in reasonably good agreement 
with the exact value v, = 0.5. When b is large, using Stirling’s formula, (1 1) and (12) 
become 

S , ( b )  - (2b/ . r ry2  

A(b,  1) - 2b( l -  l/J?rb). 
(13) 

(14) 
From (9), we find 

U,( b )  - 4 + O( l / ln  b) .  (15) 

So, the exact value of v, is obtained in the b + 00 limit. However, the convergence is 
rather slow in this case. If we use the second moment difinitions of SI2’( b )  and Si2’( b )  
in (4) and ( 5 ) ,  exact results are also obtained in the b+00 limit. 

In order to show that our method is not limited to the particular square cells chosen 
in figure l ( a ) ,  we choose another kind of cell as shown in figure 3. Since the preferred 
axis is OY, the origin must be fixed at the point 0. All directed SAWS starting at 0 
traversing the cell vertically are considered as percolated. For such a cell, obviously, 
we have Sll(b) = b. For simplicity, only cells with even b are used to perform the 
cell-to-cell transformation. It is not difficult to show that vll is again equal to 1 for all 
even b’s. In figure 4 the results for K* and vl are plotted against In(( b + 4)/ b) .  The 
exact results are again obtained in the b + 00 limit. However, in the following calcula- 
tions we will only use the square cells (figure l ( a ) )  because it is much simpler. 

Figure 3. Directed SAWS. A different kind of cell is used for transformations. Here we 
show the b = 6 cell. 

As we have mentioned before, our method is the generalisation of the conventional 
RSRG. If the ‘directed’ restriction is lifted in our previous calculations, we would expect 
that both vll and v, will approach the v value of the undirected SAWS. This point has 
been checked by performing undirected cell-to-cell transformations. The values of 
K*,  vll and v, are plotted against In( b/b’ )  in figure 5 .  We find that the values K ,  = 0.379 
and v = 0.75 obtained by Derrida (1981) for undirected SAWS are indeed recovered 
in the b + 00 limit. So, our method is not limited to the directed systems. It provides 
another way to treat undirected systems using the RSRG method. 
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Figure 4. Directed SAWS. Using the kind of cell 
shown in figure 3, cell-to-cell transformation results 
are plotted against ln[(b+4)/b]. Right axis for V-. 
Left axis for K*. 

Figure 5. Undirected SAWS. The values of K * ,  VI, 
and vl obtained from cell-to-cell transformations 
are plotted against ln(b/b'). 

3. Directed lattice animals 

Now we apply our method to the more interesting case of directed lattice animals on 
a square lattice where the critical behaviour is non-classical. For the fully directed 
bond lattice animals, a cell of linear size b = 3 is shown in figure 6( a). A single origin 
is again fixed at point 0. All the percolating clusters which traverse the cell vertically 
are renormalised to a directed bond OA (figure 6 ( b ) )  with fugacity K'. The recursion 
relations for b S 4 have been given by Redner and Yang (1982). The effective lengths 
SII( b )  and S,( b )  are defined in the following ways. For every percolating cluster, we 
project the upper-left part of the cluster onto two axes: one the preferred axis and 
the other perpendicular to it. These projections define SII and S ,  of this configuration 
(figure 6( a ) ) .  Weighted by this configuration and averaging over all percolating 
configurations we obtain Sll( b)  and S,( b) .  The basic units OA and OB (figure 6( b ) )  

Y 

( a )  ib l  

Figure 6. Directed bond lattice animals. ( a )  A cell of 3 X 3 is shown. OY is the preferred 
direction. Lengths SI, and S, are also shown. (b) OA and OB are the renormalised 
directed bonds with fugacity K'. These form the basic unit of the renormalised lattice. 
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of the renormalised lattice are then obtained. From (8) and (9) one can calculate wlI 
and wL. The results are given in table 1. These results are in reasonably good agreement 
with values K,=0.2851, vll=0.8180 and v,=O.498 found by Nadal et a1 (1982). 
Since the values of ulI in table 1 show a small fluctuation, we think a larger cell 
calculation is required to determine vlI and vi more accurately. 

Table 1. Directed bond lattice animals. Results for K * ,  uIl and ul for the rescaling of a 
cell of linear size b to a cell of linear size b‘ (in renormalised units). 

Xl 2 3 

K *  2 0.3306 
VI1 0.7945 
V I  0.4879 

K *  3 0.3157 0.3048 
VI1 0.7976 0.8013 
V I  0.4993 0.5132 

K *  4 0.3080 0.3003 0.2966 
VI1 0.7972 0.7984 0.7941 
U, 0.5041 0.5142 0.5146 

Finally, we consider the case of fully directed site lattice animals on a square lattice. 
As before, a cell of bZ sites is chosen with a single fixed origin at the lower-left corner 
of the cell (figure 7). Here we use both the Ro and RI  rules (Reynolds et a1 1980) 
to define when the cell percolates. To obtain SI1 and S,,  unlike the bond case, the 
whole percolating cluster is projected onto two axes: one parallel and the other 
perpendicular to the preferred direction. The second moment definitions Si2)( b )  and 
S‘,‘’ ( b )  are similarly defined. Since Sll( b = 1) and S,( b = 1) are equal to zero, cell-to-cell 
transformations must be used here. The renormalised cell contains ( b ’ ) 2  sites with 
b> b ’ s  2. The results are given in tables 2(a)  and 2(b) for the R o  and R, rules 
respectively, where vi2) and vi2) are the results obtained from the second moments, 
Si2) and Siz), calculations. Since the results obtained from the second moments are 
very close to the first moment results, we only give those results for the Ro rule for 
comparison. Table 2 also shows that the differences between Ro and RI  rules are 

Figure 7. Directed site lattice animals. A cell of 3 x 3 sites ( b  = 3) is shown. OY is the 
preferred direction. Lengths SIl and S, are also shown. 
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Table 2. Directed site lattice animals. Results for K*, U,, and vl for the rescaling of a cell 
of b2 sites to a cell of (b')' sites, ( a )  using R ,  rule, ( b )  using R ,  rule. 

( a )  

b \I 2 3 4 5 

K *  3 
4 
5 
6 

U11 3 
4 
5 
6 

"y) 3 
4 
5 
6 

V l  3 
4 
5 
6 

u y  3 
4 
5 
6 

0.3528 
0.3500 
0.3475 
0.3457 

1.3203 
1.2268 
1.1736 
1.1384 

1.2780 
1.1930 
1.1443 
1.1121 

1.1094 
1.0141 
0.9588 
0.9217 

1.1068 
1.0091 
0.9536 
0.9168 

0.3472 
0.3453 
0.3439 

1.0942 
1.0559 
1.0305 

1.0722 
1.0369 
1.0135 

0.8786 
0.8375 
0.8098 

0.8701 
0.8302 
0.8034 

0.3436 
0.3425 0.3414 

1.0061 
0.9849 0.9588 

0.9910 
0.9714 0.9472 

0.7839 
0.7602 0.7310 

0.7782 
0.7553 0.7269 

( b i  

b' 
b 2 3 4 

K* 3 
4 
5 

"ii 3 
4 
5 

Yl 3 
4 
5 

0.3670 
0.3598 0.3535 
0.3551 0.3502 0.3472 

1.2934 
1.2068 1.0836 
1.1570 1.0472 1 .oooo 
1.0837 
0.9976 0.8741 
0.9466 0.8354 0.7848 

rather small. In figure 8 critical quantities K*,  vll and v, are plotted against In( b/ b ' )  
for the first moment results with Ro rule. The results of Nadal et a1 (1982) with K,  = f, 
u1 = and v, = 1 are indeed approached when b + 00. 

4. Concluding remarks 

We have developed a new RSRG method to treat systems with directionally dependent 
critical behaviour. For a given cell of linear size b, two effective lengths SI1(b) and 
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Figure 8. Directed site lattice animals. Cell-to-cell transformation results for K * ,  Y I I  and 
Y _  are plotted against In( b /  b ’ ) .  Left axis for K* and vL. Right axis for vll. 

S,( b )  are defined. A deformed renormalised lattice is constructed from these effective 
lengths. These effective lengths form the basic units for the measurements of correlation 
lengths tll(K’) and t , ( K ’ )  in the renormalised lattice. It is the anisotropic rescaling 
of these effective lengths SII( b )  and S,( b)  which give the anisotropic exponents y~ and 
VL. 

Our method is the generalisation of the usual RSRG method to directed systems. 
when ‘directed’ restriction is lifted, both yI and vL are expected to approach the 
isotropic v of the corresponding undirected systems when b becomes large. So, it also 
provides another method to study undirected systems. 

When we apply this method to directed SAWS, exact results are obtained in the 
b + CO limit. For the cases of directed bond and directed site lattice animals, our results 
are also in good agreement with the phenomenological renormalisation calculations. 

We have also used this method on three-dimensional directed systems where the 
phenomenological renormalisation is not applicable. Since only a 2 x 2 x 2 cell is used, 
the results are not very good. A large-cell Monte Carlo renormalisation method is 
required to give reliable results. 

When this method is applied to directed percolation systems in two dimensions, 
the single-root method can not be used because it always overestimates the critical 
percolation pc.  In this case the cell shown in figure 3 with the edge-to-edge rule has 
to be used. Again large-cell Monte Carlo renormalisation calculations are required 
to give reliable results. Efforts have been made in this direction. 
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